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We measure the time change of the contact force F�t� during the impact between very soft gel balls and a
rigid substrate. For low-impact velocities Vi, F�t� is single-peak functions as intuitively expected; and the
relation between Vi and the peak value Fm �of F�t�� obeys the prediction of the standard theory for the impact
in the linear elastic regime �i.e., the Hertz theory�. On the other hand, for large Vi, where the gel ball deforms
into thin pancakelike shapes, F�t� becomes double-peak functions. We compare the data of F�t� for large Vi

with a prediction of a model proposed in our previous study �Tanaka, Europhys. J. E 18, 95 �2005��. The
model can quantitatively reproduce the experimental Fm−Vi relation, and shows that the double-peak behavior
of F�t� is a consequence of the expanding deformation of the pancake-shaped gel, i.e., spreading motion
parallel to the substrate.
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I. INTRODUCTION

Impacts of two or more independent bodies are compli-
cated phenomena concerned with a wide range of practical
and fundamental problems. Thus, they are still actively stud-
ied in the fields of mechanical engineering �1,2�, biomechan-
ics �3�, and granular �4� and soft matter physics �5,6�. Physi-
cally, an impact process can be characterized by the
following quantities �1�: �i� the change in the shape of the
bodies at the maximum deformation, �ii� the time needed to
accomplish the maximal deformation, and �iii� the maximum
contact force during the impact. Furthermore, the restitution
coefficient is an important �but difficult� quantity from both
fundamental and practical points of view �7�. Phenomeno-
logically, understanding the impact of a system is interrelat-
ing the above quantities based on an adequate constitutive
relation and on reasonable physical simplifications. For the
case of the impact between an elastic sphere and a rigid
substrate �or between two elastic spheres�, the classical Hertz
theory provides a theoretical foundation �8,9�. The starting
point of the theory is an analytical result for the relation
between the static contact force F and the indentation Y �see
Fig. 1�a��,

F = FH�Y� =
4E

3�1 − �2�
R1/2Y3/2, �1�

where R, �, and E are the radius, Poisson’s ratio, and
Young’s modulus of the sphere, respectively. The corre-
sponding elastic potential UH is

UH�Y� =
8E

15�1 − �2�
R1/2Y5/2. �2�

For the impact of an elastic sphere on the substrate �Fig.
1�b��, it is assumed that the above static relations are valid
during the impact process, and that the vertical motion of the
mass center is the only relevant mode for the kinetic energy.
Under this assumption, the impact is equivalent to the one-
dimensional motion of a mass point with the mass M
= �4� /3��R3 �� is the density of the original sphere� confined
in the nonharmonic and monotonically increasing potential

UH�Y� �see Fig. 1�c��; Y�t� and F�t�=FH�Y�t�� are single-
peak functions. The maximal indentation Ym, the maximal
contact force Fm, and the time �m needed to accomplish the
maximal deformation �hereinafter “deformation time”� can
be easily obtained, as functions of the impact velocity Vi,
from the condition of energy conservation, 1

2 MVi
2=UH�Ym�

=M�dY /dt�2+UH�Y�,

Ym/R = �15�/16�2/5�Vi/Vc�4/5, �3�

Fm/Fc = FH�Ym�/Fc = �15�/16�3/5�Vi/Vc�6/5, �4�

�m = �
0

Ym dY

�Vi
2 − 2UH�Y�/M

=
Ym

Vi
�

0

1 dz
�1 − z5/2

= 2.26 � �c� Vi

Vc
�−1/5

, �5�

where we introduced a characteristic velocity Vc	�E /�, a
characteristic force Fc	ER2, and a characteristic time scale
�c	R /Vc, and we also set �= 1

2 �incompressibility condi-
tion�, which is nearly exact for soft polymeric materials. The
characteristic powers of 3

2 in Eq. �1� and other fractional
powers in Eqs. �2�–�5� can be directly obtained by a simple
scaling argument �10�.

For the static contact and the impact of soft polymeric
materials, such as rubbers �11,12� and gels �13,14�, the
physical picture of the Hertz theory breaks down. In particu-
lar, it was observed that impacting gel balls deform into thin
pancakelike shapes on the rigid substrate; in this case, the
maximal lateral dimension Rm �i.e., the maximal radius of
the pancake�, rather than the maximal indentation Ym, is the
appropriate quantity to characterize the deformation. Experi-
mental data showed that Rm is proportional to Vi, and that �m
is independent of Vi. These results were qualitatively ex-
plained on scaling level by a simple argument that treats the
lateral spreading of the gel balls as the principal deformation
mode �13�. A simple model assuming uniform and uniaxial
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deformation �hereinafter “affine model”� quantitatively re-
produced the behavior of �m without any fitting parameter
�14�.

In the present study, we experimentally investigate the
contact force F�t� for the impact of the gel balls, and com-
pare the experimental result with the prediction of the affine
model. For large Vi, the data of F�t� has two peaks, and the
maximum contact force Fm �corresponding to the first peak�
increased more rapidly with Vi than the prediction of the
Hertz theory �Eq. �4��. The affine model can qualitatively
reproduce the data of Fm�Vi�, and tells us that the double-
peak behavior of F�t� is a consequence of the spreading mo-
tion characteristic for the impact of soft materials.

II. EXPERIMENT

The materials �acrylamide gels� and the method to per-
form the impact experiment are identical with our previous
study �13,14�. Spherical acrylamide gels �gel balls�, 5 cm in
thickness, were synthesized by a standard radical polymer-
ization of acryamide �AAm� monomer and cross-linker of
N,N’-methylenebis �acrylamide� �MBAA�. The reaction was
initiated by ammonium persulpahte and accelerated by tet-
ramethylethylenediamine. By changing the amounts of the
feed molecules �AAm and MBAA�, we obtained four kinds
of sample gels with different mechanical properties. Hereaf-
ter, we use the abbreviation of “AxBy” �x and y are numbers�
to indicate each of them; AxBy gel has the following com-
position of solvent, monomer and cross-linker: 100 g of wa-
ter; x g of AAm; � 1

100 �y� g of MBAA. Rheological charac-
terization of the sample gels revealed that they behave as
elastic materials in the frequency range from 0.1 to 100 Hz,
i.e., the real part of the complex Young’s modulus, E�, hardly
depends on the frequency, and tan � has very small values

�tan ��0.01 for A10B30 gel and tan �
0.07 even for the
most lossy A10B4 gel�. E� at 50 Hz �regarded as the normal
Young’s modulus E� and the characteristic velocity Vc
	�E /� are presented in Table I.

The impact experiment was performed by using free fall;
the impact velocity Vi was determined by the relation of Vi
=�2gh, where h is the height at which the gel balls begin to
fall down, and g=9.8 m/s2 is the acceleration of gravity. The
substrate on which the spherical gels impact had a sandwich
structure made of a circular aluminum plate �lower plate,
1 cm in thickness and 25 cm in diameter�, three force gauges
to measure the contact force during the impacts �LMA-100N,
Kyowadengyo Co.�, and a circular acrylate resin plate �upper
plate to directly receive the impact of the gel balls, in the
same dimensions as the lower aluminum plate�. The alumi-
num plate was fixed onto the floor with bolts, and the gauges
were glued to the plates with double-faced adhesive tape.
The contact force F�t� acting on the gauges during the im-
pacts was monitored and recorded with a DC type strain
amplifier �AS 2503, NEC Sanei Co.� and a digital oscillo-
scope �DS-4264M, IWATSU Co.� connected to the amplifier.
The deformation processes of the gel balls were recorded
with a high-speed video camera �Motion Coder Analyzer,
Kodak Co.�.

III. RESULTS

Figures 2�a�–2�d� show the time change of the contact
force F�t� and the corresponding deformation processes at
different �reduced� impact velocities. In the F�t� graphs, the
jagged curves show the original data �the sampling interval is
2�10−2 ms�. The curves contain oscillatory components
with a typical peak-to-peak period of 1 ms. These compo-
nents, probably coming from vertical oscillation of the acry-
late resin plate due to a finite stiffness of the force gauges,
made it difficult to determine the peak value Fm of the true
contact force; we smoothed the original data by moving av-
erage over an averaging time of 2.4 ms. The averaging time
is such that the oscillation components of F�t� are smoothed
out, but that whole shape of F�t� is unchanged. Hereafter,
F�t� indicates the averaged data. In each sequential pictures
below the F�t� graph, the first, third, and last pictures show
the gel at the initial contact, the maximal deformation and
the “taking-off,” respectively.

Figure 2�a� shows the experimental results at Vi /Vc
=0.26. F�t� is a single-peak function. The shape of F�t� is

FIG. 1. �a� Static contact between a rigid substrate and an elastic
sphere with a radius R and Young’s modulus E. �b� An impact of the
elastic sphere on the substrate with an impact velocity Vi. �c� A
mass-spring model demonstrating the idea of the Hertz theory.

TABLE I. Young’s modulus E and a characteristic velocity Vc

	�E /�i� is density of the sample gels�. The values of E was de-
termined, from rheological measurements, as the real part of the
complex Young’s modulus at 50 Hz.

Sample name E�104 Pa� Vc �m/s�

A6B6 0.61 2.40

A10B4 1.24 3.42

A10B15 3.88 6.05

A10B30 6.46 7.81

YOSHIMI TANAKA PHYSICAL REVIEW E 73, 031403 �2006�

031403-2



somewhat asymmetrical about the peak position, correspond-
ing to the asymmetrical deformation process. For Vi /Vc
=0.66, a small shoulder appears after the peak of F�t� �the
data is not presented�; and for Vi /Vc=0.82 �Fig. 2�b��, the
shoulder becomes distinct �see the F�t� curve around t
=0.012 s�. For Vi /Vc=0.88, a secondary peak appears in F�t�
as shown in Fig. 3�c�. For Vi /Vc=2.56, where the gel ball
remarkably flattens, F�t� completely separates into two “hill”
between which F�t� falls to near zero �Fig. 2�d��.

Figure 3 is a plot of the peak value Fm �of F�t�� versus Vi.
Fm and Vi are nondimensionalized with the characteristic
quantities Fc �	ER2� and Vc �	�E /��, respectively. We re-
gard the range of 0.66�Vi /Vc�0.82 �shaded in Fig. 3�,
where the shoulder appears in F�t�, as the crossover region
from the single-peak to the double-peak behavior of F�t�.
Above the crossover regime, both the first and the secondary
peak forces are plotted. The data points from the different
gels fall onto the single behavior. The data of Fm is in agree-
ment with the prediction of the classical Hertz theory �Eq.
�4�� at low impact velocities �Vi /Vc�1�; while, for higher
Vi /Vc, the data exceeds the Hertz curve, and agrees with the
prediction of our model described in the next part.

IV. COMPARISON WITH AFFINE DEFORMATION
MODEL

In this section, we compare the experimental result of the
impact force with the prediction of the model proposed in

Ref. �14�. The model assumes that �i� after the onset of an
impact, a gel ball uniformly deforms into ellipsoidal shapes,
keeping the symmetry about the vertical line passing through
the center of the ball and about the horizontal plane contain-
ing the center �Fig. 4�, that �ii� the neo-Hookean �ideal
rubber-type� elastic energy applies to the gel ball, and that
�iii� the gel ball is incompressible.

Thanks to the assumption �i�, motion and deformation of
the gel ball can be characterized by elongation ratios for the
vertical direction 	 and for the lateral direction 
 as shown
in Fig. 4: the vertical velocity V�t� of the mass center is given
by R	̇; and a material point of �x ,y ,z� ��x ,y ,z� is the
Lagrange coordinate relative to the center� moves to the rela-
tive position of �
�t�x ,
�t�y ,	�t�z� at a given time t. The
incompressibility condition �iii� provides a constraint be-
tween 	 and 
, 	�t�
�t�2=1. The dynamics of the system is
determined by the following Lagrangian of a pair of har-
monic oscillators 	 and 
 coupled by the incompressibility
condition �14�:

L = �m	

2
R2	̇2 +

m


2
R2
̇2� −

1

2

EM

3�
�	2 + 2
2 − 3� , �6�

	�t�
�t�2 = 1, �7�

where m		6M /5 and m
	2M /5. The first term is the
kinetic energy, which was calculated as the sum of

FIG. 2. �Color online� Time change of the contact force F�t� and the corresponding impact process �lower sequential pictures�. �a�
A10B30 gel, Vi=2.0m/s, Vi /Vc=0.26. �b� A10B15 gel, Vi=5.0m/s, Vi /Vc=0.82. �c� A10B4 gel, Vi=3.0m/s, Vi /Vc=0.88. �d� A6B6 gel, Vi

=6.0m/s, Vi /Vc=2.56. In the graphs of F�t�, the jagged curves are the original data, and the thick curves are obtained by performing moving
average of the original data over an averaging time of 2.4 ms. In each deformation process, the third picture shows the shape of the gel ball
at the maximal deformation.
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1
2 M�R	̇�2 �due to the translational motion of the mass

center� and ��� /2��	̇2z2+ 
̇2x2+ 
̇2y2�dxdydz= 1
2 �M /5�R2	̇2

+ 1
2 �2M /5�R2
̇2 �due to the internal deformation�. The sec-

ond term is the potential energy; we employed the neo-
Hookean deformation energy according to �ii� �see, for ex-
ample, Ref. �15� for details of the deformation energy�. The
terms of

K	 	
m	

2
R2	̇2 and K
 	

m


2
R2
̇2 �8�

in Eq. �6� can be regarded as the kinetic energies due to the
vertical and to the lateral �spreading� motions, respectively,
and m	 �m
� is the “effective mass” for the vertical �lateral�
direction.

Eliminating 
 and 
̇ �
=	−1/2 and 
̇=−	−3/2	̇ /2� and
using the Euler-Lagrange equation �d /dt���L /�	̇�− ��L /�	�
=0, we obtain the equation of motion for 	,

	� + f�	�	�2 + g�	� = 0, �9�

f�	� 	 −
3

2	�12	3 + 1�
, g�	� 	

10�	4 − 	�
3�12	3 + 1�

, �10�

where we used the nondimensional time s	 t /�c as the argu-
ment of 	, and the prime symbol � represents the differential
with respect to s. Initial conditions are

	�0� = 1 and 	0��		��0�� =�10

13

Vi

Vc
. �11�

The condition for 	0� comes from the requirement of energy
conservation at t=0, 1

2 MVi
2= ��K	+K
��t=0 �14�. It should be

noticed that Eq. �9� is invariant for the variable transforma-
tion of s→−s, i.e., the system fulfills the time reversibility.

In Fig. 5, we present predictions of the model on 	�s� and
	��s� for different Vi /Vc, determined from numerical solu-
tions of Eqs. �9�–�11�. 	��s� is proportional to the contact
force of the model gel ball, because the vertical position of
the mass center is R	, and the contact force is given by F
=MR	̈= �4� /3�Fc	�. At first view, the shape of the 	��s�
curve is fairly different from the experimental data shown in
Fig. 2: the curves of 	�s� and 	��s� have symmetrical shapes
about the time at which 	 arrives at the minimum because of
the time reversibility of Eq. �9�; on the other hand, the actual
impact force F�t� is quite asymmetrical in time. However,
the affine model grasps interesting characteristics of the data.
Firstly, the model predicts that the peak splitting of F�t� oc-
curs at an intermediate Vi /Vc �in the next paragraph, we de-
scribe the critical impact velocity for the splitting in detail�,
and that for large Vi /Vc, 	��s� falls to near zero between the
two peaks. Secondly, the model can reproduce the maximum
value of the contact force Fm; in Fig. 3, we present the pre-
diction of the model on the relation between Fm/Fc and
Vi /Vc. �For the affine model, the second peak force is iden-
tical to the first one because of the time reversibility.� The
prediction is in good agreement with the experimental be-
havior of Fm for the first peak.

For the affine model, the critical impact velocity Vi
*,

above which 	��s� becomes a double-peak function, can be
determined as follows. Let us denote the solution of Eq. �9�
with Vi

* as 	̄�s�, and the �scaled� time at which 	̄ arrives at
the minimum as s*. The two maxima and the minimum of
	��s� for Vi�Vi

* merge at the point of �s* , 	̄�s*�� of the s
−	 plane; thus, we have the following condition to deter-
mine 	̄*	 	̄�s*�:

	̄��s*� = 	̄��s*� = 	̄���s*� = 0. �12�

With these conditions, Eq. �9� reduces to 	̄��s*�+g�	̄*�=0,
and the twice differential of Eq. �9� to 2f�	̄*�	̄��s*�
+ ��g /�	��	̄*�=0. Combining these relations, we have the
equation to determining 	̄*, 2f�	̄*�g�	̄*�− ��g /�	��	̄*�=0.
The numerical solution of this equation is 	̄*=0.497, and the
critical impact velocity Vi

* can be obtained from the energy
conservation at s=s*, 1

2 MVi
*2= 1

2 �EM /3���	̄*2+2/ 	̄*−3� �the
r.h.s. is the potential term of Eq. �6��, resulting in Vi

* /Vc
=0.65. This value of Vi

* /Vc is marked in Fig. 3 with the
upward arrow. The critical value of Vi /Vc is consistent with
the crossover regime of the experimental data.

In summary, the affine model can reproduce the double-
peak behavior of the contact force F�t� for large Vi /Vc, and
can make a qualitative prediction on the dependence of the
maximal �i.e., the first peak� contact force Fm on the impact
velocity.

FIG. 3. A plot of the peak contact force Fm/Fc vs the reduced
impact velocity Vi /Vc. The prediction of the Hertz theory and that
of our model are represented together �denoted as Hertz and Affine,
respectively�.

FIG. 4. Deformation assumed in the affine deformation model.
A material point �x ,y ,z� moves to �
�t�x ,
�t�y ,	�t�z�.
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V. DISCUSSION

We give an intuitive explanation for the double-peak be-
havior of F�t�. Although the following argument is based on
the affine model, the conclusion holds for the actual impact.
We consider the large impact velocity regime, where the
curve of 	�s� has a bucketlike shape, i.e., the shape with a
broad bottom and tilt walls, as seen in Fig. 5�c�. If we accept
the shape of the curve, the double-peak behavior of 	� can
be intuitively understood by considering osculating circles at
each part of the 	�s� curve �the curvature, roughly propor-
tional to 	�, is large only around the feet of both the walls�.
Thus, what we should do here is to make an intuitive expla-
nation for the characteristic shape of the 	�s� curve: For a
large impact velocity, the gel ball rapidly decreases its verti-
cal dimension after the initial contact; this period corre-
sponds to the left wall. Then, the deformation arrives at such
a state that the vertical dimension is sufficiently small �	
�
�, but the gel ball has a nonzero kinetic energy, most of

which is accounted for by K
 �because �	̇�� �
̇��. After that,

 increases toward the maximal deformation, transferring the
energy from K
 to the potential term �EM /2 ·3��
2, while 	
remains at small values for a while. This period corresponds
to �the left half of� the broad bottom. After the maximal
deformation, 	 changes in the reverse way, forming the right
half of the bucket. It should be noticed that the double-peak
behavior is governed by the energy exchange between K	

and K
, the former is due to the vertical motion of the mass
center, the latter to lateral �spreading� motion.

The essence of the above argument is the stagnation of the
mass center position due to the flattening and to the redirec-
tion of the velocity of each part of the gel; the existence of
the kinetic energy due to the lateral �spreading� motion plays
a crucial role. Therefore, the mechanism applies to the im-
pact of actual gel balls, and to the impact of a wider range of

soft materials that can undergo large deformation without
breaking, such as small water drops on super hydrophobic
substrate �5,6�.

Lastly, we discuss on the origin of the asymmetry in the
experimental behavior of F�t�, which cannot be explained by
the affine model. There are two candidates for the origin: �i�
dissipative events due to bulk viscosity and friction between
the gel balls and the substrate �the substrate is normally dried
in this study, i.e., not treated with any lubricant liquid, see
below�, and �ii� nonuniform deformations of the gel balls due
to the asymmetrical boundary condition �14�, that is, as seen
in Fig. 2, the upper parts of the ball is strongly tipped up
after the maximal deformation, while the acceleration of the
mass center is delayed and tardy. Actually, the dissipative
events give very minor effects on the impact behavior, and
thus the asymmetry of F�t� is attributed to �ii�. This is be-
cause �1� the viscoelastic �rheological� measurements re-
vealed that all gels used in the experiment have very low
values of tan � �
0.07 even for the most dissipative A10B4
gel� at the frequencies relevant to the impact experiment
�100 Hz�, and because �2� control experiment on the im-
pacts with the slippery substrate �gotten wet with a low vis-
cosity oil or solution of surfactant� showed no remarkable
difference of the impact behavior �the deformation time,
etc.�. To deal with the irreversible elastic deformation, we
need to extend the affine model by adding other degrees of
freedom that express the asymmetry of the deformation.
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FIG. 5. Predictions of the affine model on 	�s� and 	��s�.
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